\mathbf{Q}	Working	Answer	Mark	Notes

1 (a)	$4 y>12-5$		2	M1 Allow $y=\frac{7}{4}$ oe or $y>-\frac{7}{4}$ or $y<\frac{7}{4}$
		$y>\frac{7}{4}$		A1 oe
(b)	$12 x-10$ or $2(6 x-5)=4 x-7$ or $6 x-5=\frac{4}{2} x-\frac{7}{2} \text { oe }$		3	M1 for removal of fraction and multiplying out LHS or rearranging to remove the fraction or separating fraction (RHS) in an equation
	$12 x-4 x=-7+10 \text { oe }$ or $6 x-\frac{4}{2} x=-\frac{7}{2}+5 \text { oe }$			M1 ft (dep on 4 terms) for terms in x on one side of equation and number terms on the other
		$\frac{3}{8}$		A1 (dep M1) oe
				Total 5 marks

$\mathbf{2}$ (a)		1	1	B1
(b)		6	1	B1
(c)	$206+m-214=-3$ oe or $\frac{7^{-3} \times 7^{214}}{7^{206}}$ or $\frac{7^{211}}{7^{206}}$ oe	2	M1 allow $7^{206+m-214}=7^{-3}$ oe (must be in the form $7^{x}=7^{y}$ where x and y are correct expressions)	
		5		A1 accept 7^{5}

Q	Working	Answer	Mark	Notes	
3 (a)		50000	1	B1	
(b)		6×10^{-5}	1	B1	
					Total 2 marks

| Q Working | Answer | Mark | Notes |
| :--- | :--- | :--- | :--- | :--- |

$\mathbf{5}$ (a)		$15,0,-1,3$	2	B2 for 4 correct values (B1 for 2 or 3 correct values)
(b)	$(-2,15)(-1,8)(0,3)(2,-1)(3,0)(4,3)$		2	M1 (dep on B1) ft from (a) for at least 5 points plotted correctly
		correct graph	A1 for a correct graph (clear intention to go through all the points and which must be curved at the bottom) Note: If a fully correct graph is shown, but an incomplete table is shown in (a), then award the marks for (a)	

$\mathbf{6}$ (a)		x^{9}	1	B1 cao	
	(b)		$64 y^{6}$	2	B2 for $64 y^{6}$ (B1 for $k y^{6}$ where $k \neq 64$ or $64 y^{m}$ where $\left.m \neq 6\right)$
(c)	$(n \pm 3)(n \pm 4)$	2	M1 for $(n \pm 3)(n \pm 4)$ or $(n+a)(n+b)$ where $a b=12$ or $a+b=-7$ Condone use of a different letter to n		
			$(n-3)(n-4)$		A1
				Total 5 marks	

Q	Working	Answer	Mark	Notes
7	$\begin{aligned} & n\left(3 n^{2}+5 n-12 n-20\right) \text { or } n\left(3 n^{2}-7 n-20\right) \text { or } \\ & \left(3 n^{2}+5 n\right)(n-4) \text { or }\left(n^{2}-4 n\right)(3 n+5) \text { or } \\ & 3 n^{3}+5 n^{2}-12 n^{2}-20 n \end{aligned}$		2	M1 for a correct partial expansion (may be unsimplified) (allow one error in the expansion of $(n-4)(3 n+5)$ e.g. for any 3 correct terms or for 4 out of 4 correct terms ignoring signs or for $3 n^{2}-7 n \ldots$ or for $\ldots-7 n-20$)
		$3 n^{3}-7 n^{2}-20 n$		A1 oe e.g. if correct answer seen allow further factorisation to $n\left(3 n^{2}-7 n-20\right)$
				Total 2 marks

8 (a)		$-2,-1,0,1,2$	2	B2 for $-2,-1,0,1,2$ with no additions or repeats (B1 for 4 of $-2,-1,0,1,2$ with no additions or repeats or for 6 values with no more than one incorrect value e.g. all of $-2,-1,0,1,2,3$ or for 5 values with one error)
(b)		Closed circle at $x=1$ and a line with an arrow to the left	1	B1 for a closed circle at $x=1$ and a line with an arrow of any length to the left Allow] for a closed circle Allow a line without an arrow if it reaches to at least -3
				Total 3 marks

\mathbf{Q}	Working	Answer	Mark	Notes

9		$\begin{gathered} y=-3 x+5 \\ \text { oe } \end{gathered}$	2	B2 fully correct equation eg $y=-3 x+5$ or $y-5=-3(x-0)$ If not B2 then B1 for $y=-3 x+a$ with $a \neq 5$ or $\begin{aligned} & y=b x+5(b \neq 0,-3) \text { or } \\ & (L=)-3 x+5 \end{aligned}$
				Total 2 marks

$\mathbf{1 0}$	30	1	for a start to the process eg, $5406 \div 6(=901)$ or $5400 \div 6(=900)$ or $5000 \div 6(=833.333 .)$.
		1	process to find the length of one side, eg $\sqrt{901}$ or $\sqrt{900}$ or $\sqrt{833.33 . .}$
		1	for 30

| Q Working | Answer | Mark | Notes |
| :--- | :--- | :--- | :--- | :--- |

11	Lines (solid or dashed) $x=6$ and $y=2$ drawn		3	B1 The lines $x=6$ and $y=2$ should extend far enough to intersect with each other.
	Line (solid or dashed) $y=x+1$ drawn		B1 The line should extend from at least $x=1$ to $x=6$ or far enough to intersect with their horizontal and vertical lines.	
Region R shown (shaded or not shaded)	Correct region identified			

\mathbf{Q}	Working	Answer	Mark	Notes

$\mathbf{1 2}$	$n^{2} t^{3}=4 d+t^{3}$	$n^{2}=\frac{4 d}{t^{3}}+1$		M1 for multiplying by the denominator or for dividing the RHS by t^{3}	
	$t^{3}\left(n^{2}-1\right)=4 d$ oe	$n^{2}-1=\frac{4 d}{t^{3}}$			M1 for isolating terms in t^{3} and factorising the correct expression of the equation or for isolating the $\frac{4 d}{t^{3}}$ term
	$t^{3}=\frac{4 d}{\left(n^{2}-1\right)}$ oe	$t^{3}=\frac{4 d}{\left(n^{2}-1\right)}$		M1 for making t^{3} the subject	

Q Working \quad Answer | | Mark | Notes |
| :--- | :--- | :--- |

				Total 8 marks

Q	Working	Answer	Mark	Notes
14	$\begin{aligned} & \frac{12}{4 x}+\frac{2(x+2)}{4 x}+\frac{x}{4 x} \text { oe or } \frac{12+2(x+2)+x}{4 x} \text { oe } \\ & \frac{3(8 x)}{8 x^{2}}+\frac{4 x(x+2)}{8 x^{2}}+\frac{2 x^{2}}{8 x^{2}} \text { oe or } \\ & \frac{3(8 x)+4 x(x+2)+2 x^{2}}{8 x^{2}} \text { oe } \end{aligned}$		3	M1 for three correct fractions with a common denominator or a single correct fraction
	$\begin{aligned} & \frac{12+2 x+4+x}{4 x} \text { oe or } \\ & \frac{24 x+4 x^{2}+8 x+2 x^{2}}{8 x^{2}} \text { oe or } \\ & \frac{6 x^{2}+32 x}{8 x^{2}} \text { oe or } \frac{3 x^{2}+16 x}{4 x^{2}} \text { oe or } \frac{6 x+32}{8 x} \text { oe } \end{aligned}$			M1 for a correct single fraction with brackets expanded
		$\frac{3 x+16}{4 x}$		A1 oe $\frac{16+3 x}{4 x}$
				Total 3 marks

Q	Working	Answer	Mark	Notes
15	$\begin{aligned} & \begin{array}{l} A B C=90^{\circ} \text { and } A C B(=A D B)=180-90-55 \\ (=35) \\ \text { or } \\ A B O=55^{\circ} \text { and } A O B=180-2 \times 55(=70) \\ \text { or } \\ B D C=55^{\circ}, A D C=90^{\circ} \text { and } A D B=90-55(= \\ 35) \end{array} \\ & \hline \end{aligned}$		4	M1
		35		A 1 for $A D B=35$
	Angles in a semicircle are 90° Angles in a triangle add to 180° (Angles in a triangle add to 180°) Angles in the same segment (are equal) OR angles at the circumference subtend(ed) from the same arc/chord of the circle (are equal) or Angles in an isosceles triangle (are equal) Angles in a triangle sum to 180° (Angles in a triangle add to 180°) Angle at the centre is $2 \times$ (double) angle at circumference / angle at circumference is $\underline{1 / 2}$ angle at centre or Angles in the same segment (are equal) OR angles at the circumference subtend(ed) from the same arc/chord of the circle Angles in a semicircle are 90°			B2 (dep on M1) for all 3 reasons appropriate to their method B1 (dep on M1) for one correct circle theorem appropriate to their method) NB For the third method only 2 reasons are required
				Total 4 marks

Q	Working	Answer	Mark	Notes
16	$\begin{aligned} & 3\left(x^{2}+4 x\right)+19 \text { and } 3\left[(x+2)^{2}-2^{2}\right]+19 \text { or } \\ & 3\left(x^{2}+4 x+\frac{19}{3}\right) \text { and } 3\left((x+2)^{2}-2^{2}+\frac{19}{3}\right) \text { or } \\ & a=3 \text { and } 2 a b=12 \text { oe and } b^{2} a+c=19 \text { oe or } \\ & a=3 \text { and } b=\frac{12}{2 \times 3} \text { oe and } c=-\frac{12^{2}}{4 \times 3}+190 \mathrm{e} \end{aligned}$			M1 for correctly taking out a factor of 3 and correctly completing the square or for equating coefficients by expanding $a(x+b)^{2}+c=a x^{2}+2 a b x+b^{2} a+c$ or for equating coefficients by using $a x^{2}+b x+c=a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a}+c$
		$3(x+2)^{2}+7$		A1 accept $a=3, b=2, c=7$
				Total 2 marks

$\mathbf{1 7}$ (i)		19	1	B1
(ii)	0	1	B1	
(iii)		11	1	B1
(iv)		28	1	B1
				Total 4 marks

| 18 | (a)(i) | $(-6,1)$ | 2 | B1 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Q Working Answer Mark Notes (b) $(-1,6),(3,-2),(7,6)$ $(-2,-4)$ B1 (b) Fully correct graph 2 B2 for a fully correct graph (B1 for a V shape with least value at $(3,-2))$ (c) $-3,4$ 2 B2 for 2 correct values in any order (B1 for 1 correct value)

\mathbf{Q}	Working	Answer	Mark	Notes

19		$-\frac{4}{3}$	1	B1
				Total 1 mark

20	E.g. $n, n+1, n+2$ $\begin{aligned} & \left(n^{2}=\right) n^{2} \\ & \left((n+1)^{2}=\right) n^{2}+n+n+1=n^{2}+2 n+1 \mathrm{oe} \\ & \left((n+2)^{2}=\right) n^{2}+2 n+2 n+4=n^{2}+4 n+4 \mathrm{oe} \end{aligned}$ or E.g. $n-1, n, n+1$ $\begin{aligned} & \left((n-1)^{2}=\right) n^{2}-n-n+1=n^{2}-2 n+1 \mathrm{oe} \\ & \left(n^{2}=\right) n^{2} \\ & \left((n+1)^{2}=\right) n^{2}+n+n+1=n^{2}+2 n+1 \mathrm{oe} \end{aligned}$		3	M1 for 3 appropriate terms for their 3 numbers and for correctly finding the expansion of at least 2 squares (Allow $2 \times$ middle number +2)
	$\begin{aligned} & n^{2}+n^{2}+2 n+2 n+4\left(=2 n^{2}+4 n+4\right) \text { oe and } \\ & 2(n+1)^{2}=2 n^{2}+2 n+2 n+2\left(=2 n^{2}+4 n+2\right) \mathrm{oe} \end{aligned}$ or $n^{2}-2 n+1+n^{2}+2 n+1\left(=2 n^{2}+2\right) \mathrm{oe}$			M1 for finding the sum of first and last square and double the square of the middle (Allow $2 \times$ middle number +2)
	$\begin{aligned} & \text { E.g. } 2 n^{2}+4 n+4=2 n^{2}+4 n+2+2 \mathrm{oe} \text { or } \\ & 2(x+1)^{2}+2=2(x+1)^{2}+2 \mathrm{oe} \end{aligned}$ or $2 n^{2}+2=2 n^{2}+2 \mathrm{oe}$	Complete proof		A1 for conclusion from two correct expressions e.g. $2 n^{2}+4 n+4$ and $2 n^{2}+4 n+2$

	Q	Wor	Answer	Mark			Notes
22	$\begin{aligned} & \overrightarrow{O N}=) \lambda(\mathbf{a}+\mathbf{b})(=\lambda \mathbf{a}+\lambda \mathbf{b}) \text { or } \\ & (\overrightarrow{N Y}=)(1-\lambda)(\mathbf{a}+\mathbf{b})(=(1-\lambda) \mathbf{a}+(1-\lambda) \mathbf{b}) \end{aligned}$					5	M1 for finding a vector for $\overrightarrow{O N}$ or $\overrightarrow{N Y}$ or $\overrightarrow{N O}$ or $\overrightarrow{Y N}$ in terms \mathbf{a} and \mathbf{b} and using λ oe (can be embedded)
	$\begin{aligned} & (\overrightarrow{M N}=\overrightarrow{M O}+\overrightarrow{O N}=)-0.5 \mathbf{a}+\lambda \mathbf{a}+\lambda \mathbf{b}(=(\lambda-0.5) \mathbf{a}+\lambda \mathbf{b}) \mathbf{o r} \\ & (\overrightarrow{M Z}=\overrightarrow{M O}+\overrightarrow{O Z}=)-0.5 \mathbf{a}+3 \mathbf{b o r}(\overrightarrow{M N}=\overrightarrow{M X}+\overrightarrow{X Y}+\overrightarrow{Y N}=) 0.5 \mathbf{a}+\mathbf{b}+(\lambda-1)(\mathbf{a}+\mathbf{b})(=(\lambda-0.5) \mathbf{a}+\lambda \mathbf{b}) \end{aligned}$						M1 for finding a vector for $\overrightarrow{M N}$ or $\overrightarrow{N M}$ or $\overrightarrow{M Z}$ or $\overrightarrow{Z M}$
	$\begin{aligned} & (\overrightarrow{M N}=\mu \overrightarrow{M Z}=) \mu(-0.5 \mathbf{a}+3 \mathbf{b})(=-0.5 \mu \mathbf{a}+3 \mu \mathbf{b}) \mathbf{o r} \\ & (\overrightarrow{O N}=\overrightarrow{O M}+\overrightarrow{M N}=) 0.5 \mathbf{a}+\mu(-0.5 \mathbf{a}+3 \mathbf{b})(=(0.5-0.5 \mu) \mathbf{a}+3 \mu \mathbf{b}) \mathbf{o r} \\ & (\overrightarrow{N Y}=\overrightarrow{N M}+\overrightarrow{M X}+\overrightarrow{X Y}=)-\mu(-0.5 \mathbf{a}+3 \mathbf{b})+0.5 \mathbf{a}+\mathbf{b}(=(0.5+0.5 \mu) \mathbf{a}+(1-3 \mu) \mathbf{b}) \end{aligned}$						M1 for finding a vector for $\overrightarrow{M N}$ or $\overrightarrow{O N}$ or $\overrightarrow{N Y}$ or $\overrightarrow{N M}$ or $\overrightarrow{N O}$ or $\overrightarrow{Y N}$ using another variable e.g. $\mu \mathrm{oe}$
	$\begin{gathered} -0.5 \mu=-0.5+\lambda \mathrm{oe} \\ 3 \mu=\lambda \mathrm{oe} \end{gathered}$		$\begin{gathered} 1-\lambda=0.5 \mu+0.5 \mathrm{oe} \\ 1-\lambda=1-3 \mu \mathrm{oe} \end{gathered}$				M1 for setting up two simultaneous equations using the components of a and \mathbf{b} for $\overrightarrow{M N}$ or $\overrightarrow{O N}$ or $\overrightarrow{N Y}$ oe
					$\frac{3}{7}$		$\begin{aligned} & \text { A1 (allow } \frac{3}{7}= \\ & 0.42(8571 \ldots) \text { to } 2 \mathrm{sf} \\ & \text { truncated or rounded) } \end{aligned}$
							Total 5 marks

Q		Working						Answer		Mark		
				Edexcel averages: scores of candidates who achieved grade:								
Qn	Mean score	Max score	$\begin{array}{\|l\|} \hline \text { Mean } \\ \% \end{array}$	ALL	9	8	7	6	5	4	3	U
1	4.45	5	89	4.45	4.92	4.85	4.78	4.22	3.66	2.03	0.59	0.00
2	3.61	4	90	3.61	3.97	3.86	3.75	3.47	2.98	2.10	1.05	0.00
3	1.84	2	92	1.84	1.94	1.89	1.87	1.82	1.70	1.55	1.22	0.00
4	3.69	4	92	3.69	3.92	3.83	3.73	3.64	3.47	2.84	1.75	0.00
5	3.54	4	89	3.54	3.90	3.77	3.64	3.29	3.05	2.32	1.25	0.00
6	4.44	5	89	4.44	4.94	4.85	4.54	4.14	3.65	2.48	1.48	0.00
7	1.62	2	81	1.62	1.92	1.86	1.67	1.38	1.15	0.37	0.33	0.00
8	2.35	3	78	2.35	2.71	2.62	2.40	2.10	1.62	1.33	0.44	0.00
9	1.52	2	76	1.52	1.95	1.88	1.51	1.07	0.52	0.24	0.00	0.00
10	1.36	3	45	1.36	2.76	2.58	2.11	1.79	1.21	0.83	0.67	0.42
11	1.86	3	62	1.86	2.77	2.22	1.51	0.77	0.39	0.09	0.04	0.10
12	2.46	4	62	2.46	3.70	2.76	1.87	1.28	0.60	0.25	0.04	0.00
13	4.24	8	53	4.24	6.22	4.40	3.29	2.48	1.45	1.01	0.29	0.00
14	1.71	3	57	1.71	2.54	1.86	1.31	1.02	0.61	0.03	0.00	0.00
15	1.87	4	47	1.87	2.86	2.05	1.36	0.85	0.48	0.34	0.19	0.00
16	0.97	2	49	0.97	1.67	0.92	0.58	0.29	0.22	0.03	0.00	0.00
17	1.54	4	39	1.54	2.49	1.47	1.04	0.61	0.40	0.23	0.18	0.00
18	2.74	6	46	2.74	4.81	2.90	1.44	0.54	0.23	0.13	0.04	0.00
19	0.44	1	44	0.44	0.82	0.40	0.20	0.08	0.01	0.00	0.00	0.00
20	1.33	3	44	1.33	2.38	1.43	0.52	0.29	0.10	0.06	0.00	0.00
21	1.17	3	39	1.17	2.16	1.16	0.40	0.16	0.10	0.01	0.00	0.00
22	1.04	5	21	1.04	2.18	0.67	0.24	0.08	0.03	0.00	0.00	0.00
	49.79	80	62	49.79	67.53	54.23	43.76	35.37	27.63	18.27	9.56	0.52

Q Working \quad Answer \quad Mark \quad Notes

Suggested grade boundaries

Grade	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$
Mark	61	49	39	31	23	14	8

