Q Working Answer Mark Notes	
-----------------------------	--

1 (a)	4y > 12 - 5		2	M1 Allow $y = \frac{7}{4}$ or $y > -\frac{7}{4}$ or $y < \frac{7}{4}$
		$y > \frac{7}{4}$		A1 oe
(b)	12x - 10 or $2(6x - 5) = 4x - 7$ or $6x - 5 = \frac{4}{2} x - \frac{7}{2}$ oe		3	M1 for removal of fraction and multiplying out LHS or rearranging to remove the fraction or separating fraction (RHS) in an equation
	12x - 4x = -7 + 10 oe or $6x - \frac{4}{2}x = -\frac{7}{2} + 5 \text{ oe}$			M1 ft (dep on 4 terms) for terms in x on one side of equation and number terms on the other
		$\frac{3}{8}$		A1 (dep M1) oe
				Total 5 marks

2	(a)		1	1	B1
	(b)		6	1	B1
	(c)	206 + m - 214 = -3 oe		2	M1 allow $7^{206+m-214} = 7^{-3}$ oe (must be in
		or $\frac{7^{-3} \times 7^{214}}{7^{206}}$ or $\frac{7^{211}}{7^{206}}$ oe			the form $7^x = 7^y$ where <i>x</i> and <i>y</i> are correct expressions)
			5		A1 accept 7 ⁵
					Total 4 marks

Q	Working	Answer	Mark	Notes

3 (a)	50000	1	B1
(b)	6×10^{-5}	1	B1
			Total 2 marks

4 (a)	x 0.5 1 2 3 4 5 6	Correct table	² B2 for all 4 correct values of (ie $\frac{6}{3}$)
	y 12 6 3 2 1.5 1.2 1		
			(B1 for 2 or 3 correct values)
(b)		Correct graph 7 points joined by a smooth curve.	2 M1ft (dep B1 in (a)) for 6 or 7 points plotted correctly using their values (within the circles on overlay). May be implied by curve passing through correct point. A1ft only allow one incorrect value from the table in (a), and for a curve that is decreasing throughout for $x = 0.5$ to $x = 6$. Ignore graph to the right of (6, 1) and to the left of (0.5, 12)
			Total 4 marks

	Q	Working	Answer	Mark	Notes
--	---	---------	--------	------	-------

5 (a)		15, 0, -1, 3	2	B2 for 4 correct values (B1 for 2 or 3 correct values)
(b)	(-2, 15) (-1, 8) (0, 3) (2, -1) (3, 0) (4, 3)		2	M1 (dep on B1) ft from (a) for at least 5 points plotted correctly
		correct graph		A1 for a correct graph (clear intention to go through all the points and which must be curved at the bottom) Note : If a fully correct graph is shown, but an incomplete table is shown in (a), then award the marks for (a)
				Total 4 marks

6	(a)		x^9	1	B1 cao
	(b)		$64y^{6}$	2	B2 for $64y^6$
					(B1 for ky^6 where $k \neq 64$ or
					$64y^m$ where $m \neq 6$)
	(c)	$(n\pm3)(n\pm4)$		2	M1 for $(n \pm 3)(n \pm 4)$ or
					(n+a)(n+b) where $ab = 12$ or
					a + b = -7
					Condone use of a different letter to <i>n</i>
			(n-3)(n-4)		A1
					Total 5 marks

Q Working Answer Mark Notes

7	$n(3n^{2}+5n-12n-20) \text{ or } n(3n^{2}-7n-20) \text{ or } (3n^{2}+5n)(n-4) \text{ or } (n^{2}-4n)(3n+5) \text{ or } 3n^{3}+5n^{2}-12n^{2}-20n$		2	M1 for a correct partial expansion (may be unsimplified) (allow one error in the expansion of $(n-4)(3n+5)e.g.$ for any 3 correct terms or for 4 out of 4 correct terms ignoring signs or for $3n^2 - 7n$ or for $7n - 20$)
		$3n^3-7n^2-20n$		A1 oe e.g. if correct answer seen allow further factorisation to $n(3n^2 - 7n - 20)$
				Total 2 marks

8	(a)		-2, -1, 0, 1, 2	2	B2 for -2, -1, 0, 1, 2 with no additions or
					repeats
					(B1 for 4 of -2 , -1 , 0 , 1 , 2 with no additions
					or repeats
					or
					for 6 values with no more than one incorrect
					value e.g. all of -2, -1, 0, 1, 2, 3
					or
					for 5 values with one error)
	(b)		Closed circle at	1	B1 for a closed circle at $x = 1$ and a line with
		•	x = 1		an arrow of any length to the left
			and		
			a line with an arrow		Allow] for a closed circle
			to the left		
					Allow a line without an arrow if it reaches to
					at least -3
					Total 3 marks

Q Working Answer Mark Notes

9	y = -3x + 5	2	B2 fully correct equation eg $y = -3x + 5$
	oe		or $y - 5 = -3(x - 0)$
			If not B2 then B1 for $y = -3x + a$ with $a \neq 5$ or $y = bx + 5$ ($b \neq 0, -3$) or
			(L =) -3x + 5
			Total 2 marks

10	30	1	for a start to the process eg, 5406 ÷ 6 (=901) or 5400 ÷ 6 (=900) or 5000 ÷ 6 (= 833.333)
		1	process to find the length of one side, eg $\sqrt{901}$ or $\sqrt{900}$ or $\sqrt{833.33.}$
		1	for 30

Q Working Answer Mark Notes

11	Lines (solid or dashed) $x = 6$ and $y = 2$ drawn Line (solid or dashed) $y = x + 1$ drawn		3	B1 The lines $x = 6$ and $y = 2$ should extend far enough to intersect with each other. B1 The line should extend from at least x = 1 to $x = 6$ or far enough to intersect with their horizontal and vertical lines.
	Region R shown (shaded or not shaded)	Correct region identified		B1 dep on B2
				Total 3 marks

Q	Working	Answer	Mark	Notes
---	---------	--------	------	-------

12	$n^2t^3 = 4d + t^3$	$n^2 = \frac{4d}{t^3} + 1$		4	M1 for multiplying by the denominator or for dividing the RHS by t^3
	$t^3\left(n^2-1\right) = 4d \text{ oe}$	$n^2 - 1 = \frac{4d}{t^3}$			M1 for isolating terms in t^3 and factorising the correct expression of the equation
		l			or for isolating the $\frac{4d}{t^3}$ term
	$t^3 = \frac{4d}{(n^2 - 1)}$ oe	$t^3 = \frac{4d}{(n^2 - 1)}$			M1 for making t^3 the subject
			$t = \sqrt[3]{\frac{4d}{(n^2 - 1)}}$		A1 oe eg $t = \sqrt[3]{\frac{4d}{(n^2 - 1)}}$ or $t = \left(\frac{4d}{n^2 - 1}\right)^{\frac{1}{3}}$
					SC B2 for $t = t = \sqrt[3]{\frac{4d}{(n^2 + 1)}}$
					Total 4 marks

Q	Working	Answer	Mark	Notes

13 (a)		48	1	B1 allow 47 – 49
				Accept $\binom{n}{110}$ where <i>n</i> is in the range 47 – 49
(b)		46	1	B1 allow 45.5 – 46.5
(c)	40 and 56		2	M1 for both values. LQ of $40 - 41$ and UQ in the range $56 - 58$.
				or for use of 15 and 45 (eg indicated by marks on horizontal axis that correspond to 15 and 45 on the vertical axis.) or for use of 15.25 and 45.75 (eg indicated by marks on horizontal axis that correspond to 15.25 and 45.75 on the vertical axis.
		16 to 18		A1 accept 16 to 18
(d)		Yes and correct reason	1	B1ft dep on M1 in (c) but ft their reading of the horizontal axis. For stating yes and the <u>IQR</u> for the <u>Algebra</u> test is <u>greater</u> than IQR for the Geometry test oe If using value in (c) less than 9, only accept 'no' and <u>IQR</u> for the <u>Algebra</u> test is <u>less</u> than the IQR for the Geometry test oe.
(e)	60 - '50' (= 10)		3	M1 may be seen embedded as $\frac{10}{60} = (\frac{1}{6})$ oe (eg reading of 50 from graph stated or indicated by marks on vertical axis that correspond to 64 on the horizontal axis). Allow $60 - 50' - 1 (= 9)$ oe
	$\frac{10}{60} \times \frac{10}{59}$			M1 for use of $\frac{n}{60} \times \frac{n-1}{59}$ with any integer <i>n</i> such that $2 \le n \le 59$
		$\frac{3}{118}$		A1 oe (accept 0.025 or better) Allow $\frac{6}{295}$ (= 0.02 or better) if using $\frac{9}{60} \times \frac{8}{59}$

Practice Tests Set 20 – Paper 1H mark scheme, performance data and suggested grade boundaries

Q	Working	Answer	Mark	Notes

		Total 8 marks

	Q	Working	Answer	Mark	Notes
--	---	---------	--------	------	-------

14	$\frac{\frac{12}{4x} + \frac{2(x+2)}{4x} + \frac{x}{4x} \text{ oe or } \frac{12 + 2(x+2) + x}{4x} \text{ oe}}{\frac{3(8x)}{8x^2} + \frac{4x(x+2)}{8x^2} + \frac{2x^2}{8x^2} \text{ oe or}}{\frac{3(8x) + 4x(x+2) + 2x^2}{8x^2}} \text{ oe}$		3	M1 for three correct fractions with a common denominator or a single correct fraction
	$\frac{\frac{12+2x+4+x}{4x}}{\frac{4x}{8x^2}} = 0$ or $\frac{\frac{24x+4x^2+8x+2x^2}{8x^2}}{\frac{6x^2+32x}{8x^2}} = 0$ or $\frac{3x^2+16x}{4x^2} = 0$ or $\frac{6x+32}{8x} = 0$			M1 for a correct single fraction with brackets expanded
		$\frac{3x+16}{4x}$		A1 oe $\frac{16+3x}{4x}$
				Total 3 marks

Q	Working	Answer	Mark	Notes

1.0

				1
15	$ABC = 90^{\circ}$ and $ACB (= ADB) = 180 - 90 - 55$		4	M1
	(=35)			
	or			
	$ABO = 55^{\circ}$ and $AOB = 180 - 2 \times 55$ (= 70)			
	$ADO = 55$ and $AOD = 100 - 2 \times 55 (-70)$			
	or			
	$BDC = 55^{\circ}, ADC = 90^{\circ} \text{ and } ADB = 90 - 55 (=$			
	35)			
		35		A1 for $ADB = 35$
	Angles in a semicircle are 90°			B2 (dep on M1) for all 3 reasons
	Angles in a triangle add to 180° (Angles in a			appropriate to their method
	triangle add to 180°)			"Pproprieto to mon moneta
	$\frac{11}{100}$			P1 (dan an M1) for any correct single
	Angles in the same segment (are equal) OK			BI (dep on WII) for one correct circle
	<u>angles</u> at the circumference <u>subtend(ed)</u> from			theorem appropriate to their method)
	the same <u>arc/chord</u> of the circle (are equal)			
	or			NB For the third method only 2 reasons
	Angles in an isosceles triangle (are equal)			are required
	Angles in a triangle sum to 180° (Angles in a			1
	triangle add to 180°)			
	Angle at the centre is $2 \times (double)$ angle at			
	<u>Aligic at the centre is $2 \times ($ (double) aligic at since for an a last since for an a last since $1/2$</u>			
	<u>circumference</u> / <u>angle</u> at <u>circumference</u> 15 ½			
	angle at <u>centre</u>			
	or			
	Angles in the same segment (are equal) OR			
	angles at the circumference subtend(ed) from			
	the same arc/chord of the circle			
	Angles in a semicircle are 90°			
	<u>Angles</u> in a <u>semiencie</u> are 70			
				Total 4 marks

|--|

16	$3(x^{2} + 4x) + 19 \text{ and } 3[(x + 2)^{2} - 2^{2}] + 19 \text{ or}$ $3\left(x^{2} + 4x + \frac{19}{3}\right) \text{ and } 3\left((x + 2)^{2} - 2^{2} + \frac{19}{3}\right) \text{ or}$ $a = 3 \text{ and } 2ab = 12 \text{ oe and } b^{2}a + c = 19 \text{ oe or}$ $a = 3 \text{ and } b = \frac{12}{2 \times 3} \text{ oe and } c = -\frac{12^{2}}{4 \times 3} + 190\text{ e}$		M1 for correctly taking out a factor of 3 and correctly completing the square or for equating coefficients by expanding $a(x+b)^2 + c = ax^2 + 2abx + b^2a + c$ or for equating coefficients by using $ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a} + c$
		$3(x+2)^2+7$	A1 accept $a = 3, b = 2, c = 7$
			Total 2 marks

17 (i)	19	1	B1
(ii)	0	1	B1
(iii)	11	1	B1
(iv)	28	1	B1
			Total 4 marks

Q	Working	Answer	Mark	Notes

(ii)		(-2, -4)		B1
(b)	(-1, 6), (3, -2), (7, 6)	Fully correct graph	2	B2 for a fully correct graph
				(B1 for a V shape with least value at
				(3, -2))
(c)		-3, 4	2	B2 for 2 correct values in any order
				(B1 for 1 correct value)
				Total 6 marks

Q	Working	Answer	Mark	Notes
19		4	1	B1
		$-\overline{3}$		
				Total 1 mark
•		1		
20	E.g. $n, n + 1, n + 2$ $(n^{2} =)n^{2}$ $((n+1)^{2} =)n^{2} + n + n + 1 = n^{2} + 2n + 10e$ $((n+2)^{2} =)n^{2} + 2n + 2n + 4 = n^{2} + 4n + 40e$ or E.g. $n - 1, n, n + 1$ $((n-1)^{2} =)n^{2} - n - n + 1 = n^{2} - 2n + 10e$ $(n^{2} =)n^{2}$ $((n+1)^{2} =)n^{2} + n + n + 1 = n^{2} + 2n + 10e$		3	M1 for 3 appropriate terms for their 3 numbers and for correctly finding the expansion of at least 2 squares (Allow 2 × middle number + 2)
	$n^{2} + n^{2} + 2n + 2n + 4 (= 2n^{2} + 4n + 4) \text{ oe and}$ $2(n+1)^{2} = 2n^{2} + 2n + 2n + 2(= 2n^{2} + 4n + 2)\text{ oe}$ or $n^{2} - 2n + 1 + n^{2} + 2n + 1 (= 2n^{2} + 2)\text{ oe}$			M1 for finding the sum of first and last square and double the square of the middle (Allow 2 × middle number + 2)
	E.g. $2n^2 + 4n + 4 = 2n^2 + 4n + 2 + 20e$ or $2(x+1)^2 + 2 = 2(x+1)^2 + 20e$ or $2n^2 + 2 = 2n^2 + 20e$	Complete proof		A1 for conclusion from two correct expressions e.g. $2n^2 + 4n + 4$ and $2n^2 + 4n + 2$

1.0

Practice Tests Set 20 – Paper 1H mark scheme, performance data and suggested grade boundaries

Q	Working	Answer	Mark	Notes

		Total 3 marks

21	Line drawn at (2, 1) with a positive gradient		3	M1 for a tangent drawn at $x = 2$
	that does not intersect the curve at any other			
	point.			
				M1 (dep M1) for a correct method to work out the
				gradient of the tangent.
		1.5 to 3		A1 for 1.5 to 3
				accept answers in the range $1.5 - 3$ so long as a
				tangent at $x = 2$ has been drawn.
				Total 3 marks

15

	Q	Working	Answer	Mark	Notes
--	---	---------	--------	------	-------

22	$(\overrightarrow{ON} =)\lambda(\mathbf{a} + \mathbf{b})(=\lambda \mathbf{a} + \lambda \mathbf{b})$ or			5	M1 for finding a vector for
	$(\overrightarrow{NY} =)(1-\lambda)(\mathbf{a}+\mathbf{b})(=(1-\lambda)\mathbf{a}+(1-\lambda)\mathbf{b})$				ON or NY or NO or
					\overrightarrow{YN} in terms a and b and
					using λ oe (can be
					embedded)
	$(\overrightarrow{MN} = \overrightarrow{MO} + \overrightarrow{ON} =) - 0.5\mathbf{a} + \lambda\mathbf{a} + \lambda\mathbf{b}(= (\lambda - 0.5)\mathbf{a} - \lambda\mathbf{a})$	$+\lambda \mathbf{b})\mathbf{or}$			M1 for finding a vector for $$
	$(\overrightarrow{MZ} = \overrightarrow{MO} + \overrightarrow{OZ} =) - 0.5\mathbf{a} + 3\mathbf{bor} (\overrightarrow{MN} = \overrightarrow{MX} + \overrightarrow{XY})$	$\vec{Y} + \vec{YN} = (0.5\mathbf{a} + \mathbf{b} + (\lambda - 1)(\mathbf{a} + \mathbf{b})(= (\lambda - 0.5)\mathbf{a} + \lambda \mathbf{b})$			MN or NM or MZ or
					\overline{ZM}
	$(\overrightarrow{MN} = \mu \overrightarrow{MZ} =)\mu(-0.5\mathbf{a} + 3\mathbf{b})(= -0.5\mu\mathbf{a} + 3\mu\mathbf{b})\mathbf{or}$				M1 for finding a vector for
	$(\overrightarrow{ON} = \overrightarrow{OM} + \overrightarrow{MN} =)0.5\mathbf{a} + \mu(-0.5\mathbf{a} + 3\mathbf{b})(=(0.5 - 1)^{10}$	$(0.5\mu)a + 3\mu b)or$			MN or ON or NY or
					\overrightarrow{NM} or \overrightarrow{NO} or \overrightarrow{YN} using
	$(NY = NM + MX + XY =) - \mu(-0.5\mathbf{a} + 3\mathbf{b}) + 0.5\mathbf{a}$	$+\mathbf{b}(=(0.5+0.5\mu)\mathbf{a}+(1-3\mu)\mathbf{b})$			another variable e.g. μ oe
	$-0.5\mu = -0.5 + \lambda oe$	$1 - \lambda = 0.5 \mu + 0.50e$			M1 for setting up two
	$3\mu = \lambda oe$	$1 - \lambda = 1 - 3\mu oe$			simultaneous equations
					using the components of \rightarrow
					\mathbf{a} and \mathbf{b} for MN or ON or
					NYoe
			3		A1 (allow $\frac{3}{2}$ =
			7		7
					0.42(8571) to 2 sf
					truncated or rounded)
					Total 5 marks

Q	Working	Answer	Mark	Notes

22 ALT	$(\overrightarrow{ON} =)\lambda(\mathbf{a} + \mathbf{b})(=\lambda \mathbf{a} + \lambda \mathbf{b})\mathbf{or}$ $(\overrightarrow{NY} =)(1 - \lambda)(\mathbf{a} + \mathbf{b})(=(1 - \lambda)\mathbf{a} + (1 - \lambda)\mathbf{b})$		5	M1 for finding a vector for \overrightarrow{ON} or \overrightarrow{NY} or \overrightarrow{NO} or \overrightarrow{YN} in terms a and b and using λ oe
	$(\overrightarrow{MN} = \overrightarrow{MO} + \overrightarrow{ON} =) - 0.5\mathbf{a} + \lambda\mathbf{a} + \lambda\mathbf{b}(=(\lambda - 0.5)\mathbf{a} + \lambda\mathbf{b})\mathbf{or}$ $(\overrightarrow{MN} = \overrightarrow{MX} + \overrightarrow{XY} + \overrightarrow{YN} =) 0.5\mathbf{a} + \mathbf{b} + (\lambda - 1)(\mathbf{a} + \mathbf{b})(=(\lambda - 0.5)\mathbf{a} + \lambda\mathbf{b})$			M1 for finding a vector for \overrightarrow{MN} or \overrightarrow{NM} in terms a and b and using λ oe
	$(\overrightarrow{NZ} = \overrightarrow{NO} + \overrightarrow{OZ} =) - \lambda(\mathbf{a} + \mathbf{b}) + 3\mathbf{b}(= -\lambda\mathbf{a} + (3 - \lambda)\mathbf{b})\mathbf{or}$ $(\overrightarrow{NZ} = \overrightarrow{NY} + \overrightarrow{YZ} =)(1 - \lambda)(\mathbf{a} + \mathbf{b}) - \mathbf{b} - \mathbf{a} + 3\mathbf{b}(= -\lambda\mathbf{a} + (3 - \lambda)\mathbf{b})$			M1 for finding a vector for \overrightarrow{NZ} or \overrightarrow{ZN} in terms a and b and using λ oe
	$\frac{\lambda - 0.5}{-\lambda} = \frac{\lambda}{3 - \lambda} \text{oe}$			M1 for setting up an equation using the components of \overrightarrow{MN} and \overrightarrow{NZ} oe
		$\frac{3}{7}$		A1 (allow $\frac{3}{7} = 0.42(8571)$ to 2 sf truncated or rounded)
				Total 5 marks

Q Working Answer Mark	Notes
-----------------------	-------

				Edexcel	Edexcel averages: scores of candidates who achieved grade:								
	Mean	Max	Mean										
Qn	score	score	%	ALL	9	8	7	6	5	4	3	U	
1	4.45	5	89	4.45	4.92	4.85	4.78	4.22	3.66	2.03	0.59	0.00	
2	3.61	4	90	3.61	3.97	3.86	3.75	3.47	2.98	2.10	1.05	0.00	
3	1.84	2	92	1.84	1.94	1.89	1.87	1.82	1.70	1.55	1.22	0.00	
4	3.69	4	92	3.69	3.92	3.83	3.73	3.64	3.47	2.84	1.75	0.00	
5	3.54	4	89	3.54	3.90	3.77	3.64	3.29	3.05	2.32	1.25	0.00	
6	4.44	5	89	4.44	4.94	4.85	4.54	4.14	3.65	2.48	1.48	0.00	
7	1.62	2	81	1.62	1.92	1.86	1.67	1.38	1.15	0.37	0.33	0.00	
8	2.35	3	78	2.35	2.71	2.62	2.40	2.10	1.62	1.33	0.44	0.00	
9	1.52	2	76	1.52	1.95	1.88	1.51	1.07	0.52	0.24	0.00	0.00	
10	1.36	3	45	1.36	2.76	2.58	2.11	1.79	1.21	0.83	0.67	0.42	
11	1.86	3	62	1.86	2.77	2.22	1.51	0.77	0.39	0.09	0.04	0.10	
12	2.46	4	62	2.46	3.70	2.76	1.87	1.28	0.60	0.25	0.04	0.00	
13	4.24	8	53	4.24	6.22	4.40	3.29	2.48	1.45	1.01	0.29	0.00	
14	1.71	3	57	1.71	2.54	1.86	1.31	1.02	0.61	0.03	0.00	0.00	
15	1.87	4	47	1.87	2.86	2.05	1.36	0.85	0.48	0.34	0.19	0.00	
16	0.97	2	49	0.97	1.67	0.92	0.58	0.29	0.22	0.03	0.00	0.00	
17	1.54	4	39	1.54	2.49	1.47	1.04	0.61	0.40	0.23	0.18	0.00	
18	2.74	6	46	2.74	4.81	2.90	1.44	0.54	0.23	0.13	0.04	0.00	
19	0.44	1	44	0.44	0.82	0.40	0.20	0.08	0.01	0.00	0.00	0.00	
20	1.33	3	44	1.33	2.38	1.43	0.52	0.29	0.10	0.06	0.00	0.00	
21	1.17	3	39	1.17	2.16	1.16	0.40	0.16	0.10	0.01	0.00	0.00	
22	1.04	5	21	1.04	2.18	0.67	0.24	0.08	0.03	0.00	0.00	0.00	
	49.79	80	62	49.79	67.53	54.23	43.76	35.37	27.63	18.27	9.56	0.52	

18

Q	Working	Answer	Mark	Notes

Suggested grade boundaries

Grade	9	8	7	6	5	4	3
Mark	61	49	39	31	23	14	8